Technology disruption & adoption

Economics of transport electrification & renewable energy

David Glynne Jones

18 December 2023

AEVA – ACT Branch

Technology adoption & disruption

The 'S' adoption curve

The learning cost curve (Wright's Law)

The 'S' adoption curve

S-Curve of Consumer Adoption

Electric Car Adoption Overlay, via CleanTechnica / Zach Shahan

Multiple 'S' adoption curves

US technology adoption 1900-2010

Evolutionary EV adoption curve

Annual global light duty vehicle sales

Source: Bloomberg New Energy Finance

Disruptive EV adoption curve

Ross Tessien: EVs, Oil, And ICE: Impact By 2023 And Beyond – Seeking Alpha Nov 2018

Actual EV adoption curve (2010-22)

© Statista 2023 🖡

Wright's Law

- Theodore P Wright
- Worked in US aero industry in the 1930s
- Observed that unit labour costs declined by a constant percentage with each doubling of cumulative total production volume
- Confirmed that this relationship was generally applicable to technology production

The learning cost curve – solar PV

The learning cost curve – batteries

Source: Micah Ziegler and Jessika Trancik (2021). Re-examining rates of lithium-ion battery technology improvement and cost decline. OurWorldinData.org – Research and data to make progress against the world's largest problems. Licensed under CC-BY by the author Hannah Ritchie.

Transport efficiency & economics

Electrification Renewable energy

Transport

Gasoline Vehicle Efficiency

The majority of energy is lost to engine and driveline inefficiencies or used to power accessories, resulting in less than **20% efficiency.**

Electric Vehicle Efficiency

Approximately 31-35% of energy is lost to inefficiencies. However, 22% is recaptured by regenerative braking, resulting in over **90% efficiency**

'Tank-to-wheel' efficiency

ICE powertrain ~ 15-30%

Electric powertrain ~ 80%

Wholesale energy costs

Diesel & petrol A\$110-120/MWh *

RE-generated electricity A\$50-100/MWh *

* excluding GST & excise

Energy cost `at the wheel'

Diesel & petrol

~ A\$350-800/MWh

RE-generated electricity ~ A\$65-130/MWh

Example – road freight

Sydney-Melbourne ~ 880 kilometres

Diesel semi ~ 600 litres => A\$700 *Electric semi ~ 1-1.5MWh => A\$50-150 *

* wholesale energy costs excl. GST & excise

Example – rail freight

Sydney-Melbourne ~ 865 kilometres 5000 tonne container 'superfreighter' Diesel traction ~ 15,000 litres => A\$17,000 * Electric traction ~ 50MWh => A\$2.5-5,000 *

* wholesale energy costs excl. GST & excise

Macroeconomic benefits

Currently Australia imports \sim 32 gigalitres of petroleum products (\sim 320TWh) to fuel its road fleet, at a wholesale cost of \sim A\$35 billion/year.

=> ~ 1.4% of GDP (2022)

Electrification of the road fleet by mid-21C will reduce the energy requirement to \sim 100-120TWh of domestically generated RE electricity at a wholesale cost of \sim A\$5-12 billion/year

=> ~ 0.2-0.5% of GDP (relative to 2022 baseline)

Questions & answers